CYS人臉識別技術(shù)是基于人的臉部特征信息進(jìn)行身份識別的一種生物識別技術(shù),用攝像機(jī)或攝像頭采集含有人臉的圖像或視頻流,并自動在圖像中檢測和跟蹤人臉,進(jìn)而對檢測到的人臉進(jìn)行臉部的一系列相關(guān)技術(shù),通常也叫做人像識別、面部識別。
功能介紹
臉識別系統(tǒng)主要包括四個(gè)組成部分,分別為:人臉圖像采集及檢測、人臉圖像預(yù)處理、人臉圖像特征提取以及匹配與識別。
人臉圖像采集
不同的人臉圖像都能通過攝像鏡頭采集下來,比如靜態(tài)圖像、動態(tài)圖像、不同的位置、不同表情等方面都可以得到很好的采集。當(dāng)用戶在采集設(shè)備的拍攝范圍內(nèi)時(shí),采集設(shè)備會自動搜索并拍攝用戶的人臉圖像。
人臉檢測:人臉檢測在實(shí)際中主要用于人臉識別的預(yù)處理,即在圖像中準(zhǔn)確標(biāo)定出人臉的位置和大小。人臉圖像中包含的模式特征十分豐富,如直方圖特征、顏色特征、模板特征、結(jié)構(gòu)特征及Haar特征等。人臉檢測就是把這其中有用的信息挑出來,并利用這些特征實(shí)現(xiàn)人臉檢測。
主流的人臉檢測方法基于以上特征采用Adaboost學(xué)習(xí)算法,Adaboost算法是一種用來分類的方法,它把一些比較弱的分類方法合在一起,組合出新的很強(qiáng)的分類方法。
人臉檢測過程中使用Adaboost算法挑選出一些最能代表人臉的矩形特征(弱分類器),按照加權(quán)投票的方式將弱分類器構(gòu)造為一個(gè)強(qiáng)分類器,再將訓(xùn)練得到的若干強(qiáng)分類器串聯(lián)組成一個(gè)級聯(lián)結(jié)構(gòu)的層疊分類器,有效地提高分類器的檢測速度。
人臉圖像預(yù)處理
對于人臉的圖像預(yù)處理是基于人臉檢測結(jié)果,對圖像進(jìn)行處理并最終服務(wù)于特征提取的過程。系統(tǒng)獲取的原始圖像由于受到各種條件的限制和隨機(jī)干擾,往往不能直接使用,必須在圖像處理的早期階段對它進(jìn)行灰度校正、噪聲過濾等圖像預(yù)處理。對于人臉圖像而言,其預(yù)處理過程主要包括人臉圖像的光線補(bǔ)償、灰度變換、直方圖均衡化、歸一化、幾何校正、濾波以及銳化等。
人臉圖像特征提取
人臉識別系統(tǒng)可使用的特征通常分為視覺特征、像素統(tǒng)計(jì)特征、人臉圖像變換系數(shù)特征、人臉圖像代數(shù)特征等。人臉特征提取就是針對人臉的某些特征進(jìn)行的。人臉特征提取,也稱人臉表征,它是對人臉進(jìn)行特征建模的過程。人臉特征提取的方法歸納起來分為兩大類:一種是基于知識的表征方法;另外一種是基于代數(shù)特征或統(tǒng)計(jì)學(xué)習(xí)的表征方法。
基于知識的表征方法主要是根據(jù)人臉器官的形狀描述以及他們之間的距離特性來獲得有助于人臉分類的特征數(shù)據(jù),其特征分量通常包括特征點(diǎn)間的歐氏距離、曲率和角度等。人臉由眼睛、鼻子、嘴、下巴等局部構(gòu)成,對這些局部和它們之間結(jié)構(gòu)關(guān)系的幾何描述,可作為識別人臉的重要特征,這些特征被稱為幾何特征?;谥R的人臉表征主要包括基于幾何特征的方法和模板匹配法。
人臉圖像匹配與識別
提取的人臉圖像的特征數(shù)據(jù)與數(shù)據(jù)庫中存儲的特征模板進(jìn)行搜索匹配,通過設(shè)定一個(gè)閾值,當(dāng)相似度超過這一閾值,則把匹配得到的結(jié)果輸出。人臉識別就是將待識別的人臉特征與已得到的人臉特征模板進(jìn)行比較,根據(jù)相似程度對人臉的身份信息進(jìn)行判斷。這一過程又分為兩類:一類是確認(rèn),是一對一進(jìn)行圖像比較的過程,另一類是辨認(rèn),是一對多進(jìn)行圖像匹配對比的過程。